Researchers have demonstrated how Bacillus subtilis BS20 can be optimized as a potent biocontrol agent for agriculture by scaling up antifungal metabolite production. Using the INFORS HT Labfors bench-top bioreactor, the team developed a process model and validated scale-up from 1 L to 10 L fermentation, maintaining high antifungal activity with a zone of inhibition up to 65 mm. This study offers a scalable, sustainable alternative to chemical pesticides through microbial fermentation.
Publications
Topic
Product
Researchers have demonstrated how Bacillus subtilis BS20 can be optimized as a potent biocontrol agent for agriculture by scaling up antifungal metabolite production. Using the INFORS HT Labfors bench-top bioreactor, the team developed a process model and validated scale-up from 1 L to 10 L fermentation, maintaining high antifungal activity with a zone of inhibition up to 65 mm. This study offers a scalable, sustainable alternative to chemical pesticides through microbial fermentation.
Researchers at the University of Nottingham’s School of Biosciences have advanced vaccine development for Chagas disease by expressing and purifying a key enzyme target, TcPOP, in E. coli using the INFORS HT Techfors-S pilot bioreactor. The purified protein enabled structural and immunological characterization, showing parasite-neutralizing activity in mouse models and providing insights into the conformational dynamics of the enzyme. These findings offer a strong foundation for the development of a targeted, protein-based vaccine candidate for a globally neglected tropical disease.
Researchers from Adamo Foods and the University of Nottingham investigated how nutritional manipulation of fermentation media, specifically the addition of iron (Fe III) and Vitamin B12, impacts the yield, texture, and nutritional profile of fungal mycelium grown for alternative meat applications. Using the INFORS HT Techfors-S pilot bioreactor, the team scaled up production from shake flasks and observed significant increases in bioaccumulation of iron and B12, with up to 97% terephthalic acid yield sustained across multiple cycles. Sensory testing of biomass processed into steaks also revealed changes in texture and flavor, highlighting the importance of bioreactor-based media optimization for developing high-quality, reproducible mycelium-based products.
This study done by BiOinFood, achieved a 50% increase in biomass and a 15% yield improvement by converting babassu flour into single-cell protein through fed-batch yeast cultivation using the INFORS HT Multifors bench-top bioreactor with eve software and the Minitron incubator shaker. With optimized process parameters and continuous feeding, the resulting protein-rich biomass was successfully used in plant-based burger prototypes, demonstrating a promising path for upcycling agricultural byproducts into functional food ingredients.
At the University of Boras in Sweden, researchers have scaled up second-generation bioethanol production from beech wood chips using an acetone-based organosolv fractionation process. With the help of the INFORS HT Multifors bench-top bioreactor, they confirmed high fermentation efficiency at the 10-L scale, reaching ethanol yields of up to 95% from glucose-rich C6 streams. This study illustrates how optimized biomass pre-treatment and fermentation workflows can drive more efficient and scalable biofuel production.
At Lund University, Division of Food and Pharma, researchers studied the role of annealing in the freeze-drying of probiotic bacteria. Using the INFORS HT Multifors bioreactor and eve software, they controlled the fermentation of Limosilactobacillus reuteri to produce consistent cell cultures for downstream drying. Their results show that increased annealing time leads to thicker encapsulating structures and enhanced storage stability, providing a clearer path to developing more robust probiotic products.
Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg developed and tested methods to improve the stability and recyclability of a PET-degrading enzyme for plastic recycling. Using the INFORS HT Labfors bioreactor, the team compared several immobilization strategies and found that pH-responsive polymers delivered the best results, retaining about 80% of enzyme activity and enabling up to five PET degradation cycles. In batch reactions, the process achieved more than 97% terephthalic acid yield in less than 14 hours for the first three cycles and about 78% yield in the fifth cycle. These findings support more efficient and scalable processes for enzymatic PET recycling.
In a study from the University of Aveiro, researchers leveraged the INFORS HT Minifors bench-top bioreactor to optimize recombinant laccase production in Komagataella phaffii. By fine-tuning cultivation conditions, they scaled laccase production and demonstrated its stability and effectiveness as a biocatalyst. Notably, this laccase was used to assist dopamine polymerization, achieving an innovative polydopamine coating on filter paper, an exciting advance in enzyme applications for material science.
Researchers from the University of São Paulo have developed an innovative two-stage anaerobic digestion process that enhances methane production from sugarcane vinasse. Their approach, which integrates a fermentative-sulfidogenic stage, boosts biogas quality, lowers costs, and eliminates the need for chemical additives. This promising solution could revolutionize bioenergy recovery in sugarcane biorefineries.
Researchers from the Institute of Bioprocess Engineering and Pharmaceutical Technology at the University of Applied Sciences Mittelhessen have made strides in chemoorganotrophic electrofermentation using Cupriavidus necator. By experimenting with different redox mediators, they identified ferricyanide as a key player in enhancing anodic respiration. With the INFORS HT Multitron providing precise environmental control, the team achieved remarkable current densities, offering a promising solution to the challenges of oxygen-driven fermentation systems.
Researchers at the University of Nottingham’s School of Biosciences have advanced vaccine development for Chagas disease by expressing and purifying a key enzyme target, TcPOP, in E. coli using the INFORS HT Techfors-S pilot bioreactor. The purified protein enabled structural and immunological characterization, showing parasite-neutralizing activity in mouse models and providing insights into the conformational dynamics of the enzyme. These findings offer a strong foundation for the development of a targeted, protein-based vaccine candidate for a globally neglected tropical disease.
Researchers from Adamo Foods and the University of Nottingham investigated how nutritional manipulation of fermentation media, specifically the addition of iron (Fe III) and Vitamin B12, impacts the yield, texture, and nutritional profile of fungal mycelium grown for alternative meat applications. Using the INFORS HT Techfors-S pilot bioreactor, the team scaled up production from shake flasks and observed significant increases in bioaccumulation of iron and B12, with up to 97% terephthalic acid yield sustained across multiple cycles. Sensory testing of biomass processed into steaks also revealed changes in texture and flavor, highlighting the importance of bioreactor-based media optimization for developing high-quality, reproducible mycelium-based products.
This study done by BiOinFood, achieved a 50% increase in biomass and a 15% yield improvement by converting babassu flour into single-cell protein through fed-batch yeast cultivation using the INFORS HT Multifors bench-top bioreactor with eve software and the Minitron incubator shaker. With optimized process parameters and continuous feeding, the resulting protein-rich biomass was successfully used in plant-based burger prototypes, demonstrating a promising path for upcycling agricultural byproducts into functional food ingredients.
At the University of Boras in Sweden, researchers have scaled up second-generation bioethanol production from beech wood chips using an acetone-based organosolv fractionation process. With the help of the INFORS HT Multifors bench-top bioreactor, they confirmed high fermentation efficiency at the 10-L scale, reaching ethanol yields of up to 95% from glucose-rich C6 streams. This study illustrates how optimized biomass pre-treatment and fermentation workflows can drive more efficient and scalable biofuel production.
At Lund University, Division of Food and Pharma, researchers studied the role of annealing in the freeze-drying of probiotic bacteria. Using the INFORS HT Multifors bioreactor and eve software, they controlled the fermentation of Limosilactobacillus reuteri to produce consistent cell cultures for downstream drying. Their results show that increased annealing time leads to thicker encapsulating structures and enhanced storage stability, providing a clearer path to developing more robust probiotic products.
Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg developed and tested methods to improve the stability and recyclability of a PET-degrading enzyme for plastic recycling. Using the INFORS HT Labfors bioreactor, the team compared several immobilization strategies and found that pH-responsive polymers delivered the best results, retaining about 80% of enzyme activity and enabling up to five PET degradation cycles. In batch reactions, the process achieved more than 97% terephthalic acid yield in less than 14 hours for the first three cycles and about 78% yield in the fifth cycle. These findings support more efficient and scalable processes for enzymatic PET recycling.
In a study from the University of Aveiro, researchers leveraged the INFORS HT Minifors bench-top bioreactor to optimize recombinant laccase production in Komagataella phaffii. By fine-tuning cultivation conditions, they scaled laccase production and demonstrated its stability and effectiveness as a biocatalyst. Notably, this laccase was used to assist dopamine polymerization, achieving an innovative polydopamine coating on filter paper, an exciting advance in enzyme applications for material science.
Researchers from the University of São Paulo have developed an innovative two-stage anaerobic digestion process that enhances methane production from sugarcane vinasse. Their approach, which integrates a fermentative-sulfidogenic stage, boosts biogas quality, lowers costs, and eliminates the need for chemical additives. This promising solution could revolutionize bioenergy recovery in sugarcane biorefineries.
Researchers from the Institute of Bioprocess Engineering and Pharmaceutical Technology at the University of Applied Sciences Mittelhessen have made strides in chemoorganotrophic electrofermentation using Cupriavidus necator. By experimenting with different redox mediators, they identified ferricyanide as a key player in enhancing anodic respiration. With the INFORS HT Multitron providing precise environmental control, the team achieved remarkable current densities, offering a promising solution to the challenges of oxygen-driven fermentation systems.